Existence of approximate Hermitian–Einstein structures on semi-stable Higgs bundles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higgs Bundles and Geometric Structures on Surfaces

Introduction 1 1. Representations of the fundamental group 3 2. Abelian groups and rank one Higgs bundles 5 3. Stable vector bundles and Higgs bundles 6 4. Hyperbolic geometry: G = PSL(2,R) 8 5. Moduli of hyperbolic structures and representations 13 6. Rank two Higgs bundles 19 7. Split R-forms and Hitchin’s Teichmüller component 21 8. Hermitian symmetric spaces: Maximal representations 24 Refe...

متن کامل

On the Existence of Semi-Stable Extensions

In this paper, we describe an open problem in abstract argumentation theory: the precise conditions under which semi-stable extensions exist. Although each finite argumentation framework can be shown to have at least one semi-stable extension, this is no longer the case when infinite argumentation frameworks are considered. This puts semi-stable semantics between stable and preferred semantics....

متن کامل

Frobenius Morphism and Semi-stable Bundles

This article is the expanded version of a talk given at the conference: Algebraic geometry in East Asia 2008. In this notes, I intend to give a brief survey of results on the behavior of semi-stable bundles under the Frobenius pullback and direct images. Some results are new.

متن کامل

Universal Log Structures on Semi-stable Varieties

Fix a morphism of schemes f : X → S which is flat, proper, and “fiber-by-fiber semi-stable”. Let IV LS be the functor on the category of log schemes over S which to any T associates the isomorphism classes of pairs (MX , f), where MX is a log structure on X×S T and f : pr∗ 2MT →MX is a morphism of log structures making (X×S T ,MX)→ T a log smooth, integral, and vertical morphism. The main resul...

متن کامل

Log Structures on Generalized Semi-Stable Varieties

In this paper we study the log structures on generalized semistable varieties, generalize the result by F. Kato and M. Olsson, and prove the canonicity of log structure when it can be expected. In out text we first give the definitions of local chart and weakly normal crossing morphism. Then we study the invariants of complete noetherian local ring coming from weakly normal crossing morphisms. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2014

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-014-0733-x